test_r13_convergence module
Contents
test_r13_convergence module¶
Module to gather tests for convergence of decoupled stress system.
This file is executed by pytest
to have good CI.
- class test_r13_convergence.TestR13Convergence[source]¶
Bases:
object
Class to bundle all stress convergence tests.
All tests are compared against reference errors.
- working_dir = 'tests/2d_r13'¶
- solver_path = 'fenicsR13'¶
- run_solver(inputfile)[source]¶
Run the solver as subprocess with the given input file.
Test fails if subprocess return Exception or error.
- compare_errors(errorsfile, ref_errorsfile)[source]¶
Check against reference errors. Compares absolute differences.
Absolute Error allowed:
1E-10
Return exception if diff returns with !=0 A comparison for complete equalness can be obtained with:subprocess.check_call([ "diff", "-u", "--strip-trailing-cr", errorsfile, ref_errorsfile ], cwd=self.working_dir)
- create_meshes()[source]¶
Create the test meshes. Executed before any test of the class.
Often not needed if meshes are in Git through LFS for reproducability.
- test_r13_1_coeffs_nosources_norot_inflow_p1p1p1p1p1_gls()[source]¶
Execute full linear R13 system test and check with reference errors.
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\(0\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(10^{-3}\)
\(\theta_w^2\)
\(2.0\)
\(v_t^2\)
\(-1.00 \sin(\phi)\)
\(v_n^2\)
\(+1.00 \cos(\phi)\)
\(p_w^2\)
\(-0.27 \cos(\phi)\)
\(\epsilon_w^2\)
\(10^{3}\)
Elements
\(P_1P_1P_1P_1P_1\)
Stabilization
GLS
- test_r13_1_coeffs_nosources_norot_inflow_p1p1p1p1p1_stab()[source]¶
Execute full linear R13 system test and check with reference errors.
Test case is similar to [TOR2017].
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\(0\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(10^{-3}\)
\(\theta_w^2\)
\(2.0\)
\(v_t^2\)
\(-1.00 \sin(\phi)\)
\(v_n^2\)
\(+1.00 \cos(\phi)\)
\(p_w^2\)
\(-0.27 \cos(\phi)\)
\(\epsilon_w^2\)
\(10^{3}\)
Elements
\(P_1P_1P_1P_1P_1\)
Stabilization
CIP: \(\delta_\theta,\delta_u=1,\delta_p=0.01\)
- test_r13_1_coeffs_nosources_norot_inflow_p1p2p1p1p2_nostab()[source]¶
Execute full linear R13 system test and check with reference errors. Use Generalized Taylor-Hood elements (P2P1P2P1P1) w.o. stabilization.
Test case is similar to [TOR2017].
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\(0\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(10^{-3}\)
\(\theta_w^2\)
\(2.0\)
\(v_t^2\)
\(-1.00 \sin(\phi)\)
\(v_n^2\)
\(+1.00 \cos(\phi)\)
\(p_w^2\)
\(-0.27 \cos(\phi)\)
\(\epsilon_w^2\)
\(10^{3}\)
Elements
\(P_1P_2P_1P_1P_2\)
Stabilization
Off
- test_r13_1_coeffs_nosources_norot_inflow_p2p2p2p2p2_gls()[source]¶
Execute full linear R13 system test and check with reference errors. Use second order equal elements.
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\(0\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(10^{-3}\)
\(\theta_w^2\)
\(2.0\)
\(v_t^2\)
\(-1.00 \sin(\phi)\)
\(v_n^2\)
\(+1.00 \cos(\phi)\)
\(p_w^2\)
\(-0.27 \cos(\phi)\)
\(\epsilon_w^2\)
\(10^{3}\)
Elements
\(P_2P_2P_2P_2P_2\)
Stabilization
GLS
- test_r13_1_coeffs_nosources_norot_inflow_p2p2p2p2p2_stab()[source]¶
Execute full linear R13 system test and check with reference errors. Use second order equal elements.
Test case is similar to [TOR2017].
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\(0\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(10^{-3}\)
\(\theta_w^2\)
\(2.0\)
\(v_t^2\)
\(-1.00 \sin(\phi)\)
\(v_n^2\)
\(+1.00 \cos(\phi)\)
\(p_w^2\)
\(-0.27 \cos(\phi)\)
\(\epsilon_w^2\)
\(10^{3}\)
Elements
\(P_2P_2P_2P_2P_2\)
Stabilization
CIP
- test_r13_1_coeffs_sources_rot_noinflow_p1p1p1p1p1_gls()[source]¶
Execute full linear R13 system test and check with reference errors.
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\((1-\frac{5R^2}{18{Kn}^2})\cos(\phi)\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(10.0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(0\)
\(\theta_w^2\)
\(0.5\)
\(v_t^2\)
\(0.0\)
\(v_n^2\)
\(0\)
\(p_w^2\)
\(0\)
\(\epsilon_w^2\)
\(0\)
Elements
\(P_1P_1P_1P_1P_1\)
Stabilization
GLS
- test_r13_1_coeffs_sources_rot_noinflow_p1p1p1p1p1_stab()[source]¶
Execute full linear R13 system test and check with reference errors.
Test case is similar to [WES2019].
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\((1-\frac{5R^2}{18{Kn}^2})\cos(\phi)\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(10.0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(0\)
\(\theta_w^2\)
\(0.5\)
\(v_t^2\)
\(0.0\)
\(v_n^2\)
\(0\)
\(p_w^2\)
\(0\)
\(\epsilon_w^2\)
\(0\)
Elements
\(P_1P_1P_1P_1P_1\)
Stabilization
CIP: \(\delta_\theta,\delta_u=1,\delta_p=0.01\)
- test_r13_1_coeffs_sources_rot_noinflow_p2p2p2p2p2_gls()[source]¶
Execute full linear R13 system test and check with reference errors.
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\((1-\frac{5R^2}{18{Kn}^2})\cos(\phi)\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(10.0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(0\)
\(\theta_w^2\)
\(0.5\)
\(v_t^2\)
\(0.0\)
\(v_n^2\)
\(0\)
\(p_w^2\)
\(0\)
\(\epsilon_w^2\)
\(0\)
Elements
\(P_2P_2P_2P_2P_2\)
Stabilization
CIP: \(\delta_\theta,\delta_u=1,\delta_p=0.01\)
- test_r13_1_coeffs_sources_rot_noinflow_p2p2p2p2p2_stab()[source]¶
Execute full linear R13 system test and check with reference errors.
Test case is similar to [WES2019].
Parameter Value
\(Kn\)
\(1.0\)
\(\dot{m}\)
\((1-\frac{5R^2}{18{Kn}^2})\cos(\phi)\)
\(r\)
\(0\)
\(\theta_w^1\)
\(1.0\)
\(v_t^1\)
\(10.0\)
\(v_n^1\)
\(0\)
\(p_w^1\)
\(0\)
\(\epsilon_w^1\)
\(0\)
\(\theta_w^2\)
\(0.5\)
\(v_t^2\)
\(0.0\)
\(v_n^2\)
\(0\)
\(p_w^2\)
\(0\)
\(\epsilon_w^2\)
\(0\)
Elements
\(P_2P_2P_2P_2P_2\)
Stabilization
CIP: \(\delta_\theta,\delta_u=1,\delta_p=0.01\)